Contents Preface . . . . . vii Acronyms and Abbreviations . . . . . xix Contributors . . . . . xxiii 1. Introduction to the Theme: Seeking Clarity for Membrane-Active Peptides . . . . . 1 Robert E. W. Hancock Acknowledgments . . . . . 7 References . . . . . 7 2. Membrane-Active Peptides: What after Babylon? . . . . . 11 Miguel A. R. B. Castanho 2.1. Whither Membrane-Active Peptides? . . . . . 13 2.1.1. Peptides in a Landscape . . . . . 15 2.1.2. Peptides as Protein-Domain Models . . . . . 15 2.1.3. The Clinical Edge . . . . . 16 2.1.4. Peptide Toxicology . . . . . 16 2.1.5. A Kingdom To Be United? . . . . . 21 2.2. Call for a New Discipline? . . . . . 21 Acknowledgments . . . . . 23 References . . . . . 23 3. Matrix Formalism for Sequence-Specific Biopolymer Binding to Multicomponent Lipid Membranes . . . . . 29 Vladimir B. Teif, Daniel Harries, Dmitri Y. Lando, and Avinoam Ben-Shaulb 3.1. Introduction . . . . . 31 3.2. Biology of Membrane Binding . . . . . 32 3.3. Physics of Polymer-Membrane Binding . . . . . 33 3.4. The Transfer Matrix Method . . . . . 36 3.4.1. General Comments . . . . . 36 3.4.2. States Enumeration . . . . . 37 3.4.3. Bound Polymer Segments . . . . . 38 3.4.4. Electrostatic Corrections to the Binding Constants . . . . . 39 3.4.5. Entropy of Lipid Sequestration . . . . . 39 3.4.6. Loops and Tails . . . . . 41 3.4.7. Transfer Matrix Construction . . . . . 42 3.4.8. Calculating Binding Probabilities . . . . . 43 3.5. Constructing the Matrix Model for the MARCKS Protein . . . . . 45 3.5.1. Image Quality . . . . . 46 3.5.2. Types of Elementary Units . . . . . 46 3.5.3. Choosing Parameters . . . . . 47 3.6. Calculating MARCKS-Membrane Binding . . . . . 48 3.7. Potential Applications to More Complex Systems . . . . . 50 Acknowledgments . . . . . 50 References . . . . . 51 4. Prediction of Membrane-Contacting Protein Surfaces . . . . . 55 Igor F. Tsigelny, Yuriy Sharikov, Ross C. Walker, Jerry Greenberg, Valentina Kouznetsova, Mark A. Miller, Eliezer Masliah 4.1. Amino Acid-Membrane Interaction . . . . . 57 4.2. Assessment of Membrane-Contacting Potential of Proteins . . . . . 65 4.2.1. Calculations of Membrane-Contacting Parameters for Amino Acids . . . . . 67 4.2.2. Binding-Free-Energy Calculations . . . . . 71 4.2.3. Membranephilic Plane Selection Calculations . . . . . 73 4.2.4. Predicted Membrane-Contacting Proteins and Membrane-Contacting Surfaces . . . . . 76 4.3. Concluding Notes . . . . . 80 References . . . . . 80 5. Langmuir Monolayers at the Liquid-Air Interface: A Useful Tool to Study the Interaction of Membrane-Active Peptides with Phospholipids . . . . . 83 Juan M. García-Ruiz 5.1. Introduction . . . . . 85 5.2. Experimental Techniques . . . . . 87 5.2.1. Circular Dichroism . . . . . 87 5.2.2. IR Reflection-Absorption Spectroscopy . . . . . 90 5.2.3. Grazing-Incidence X-Ray Diffraction . . . . . 96 3.2.4. Specular X-Ray Reflectivity . . . . . 100 3.2.5. Preparation of Lipid Vesicles . . . . . 102 3.2.6. Preparation of Lipid Monolayers at the Air-Buffer Interface . . . . . 103 5.3. Results . . . . . 103 5.3.1. NK-2 Structure in Aqueous Solutions . . . . . 103 5.3.2. NK-2 Adsorption at the AirLiquid Interface . . . . . 104 5.3.3. NK-2 Adsorption at Phospholipid Monolayers . . . . . 105 5.4. Summary . . . . . 110 References . . . . . 113 6. The Study of Biomolecular-Membrane Interactions Using Surface Plasmon Resonance Spectroscopy . . . . . 119 Leonard Keith Pattenden, Henriette Mozsolits, and Marie-Isabel Aguilar 6.1. Introduction . . . . . 121 6.2. Surface Plasmon Resonance Spectroscopy . . . . . 123 6.3. Noncommercial Sensor Surfaces and Instruments . . . . . 124 6.4. Commercially Available Surfaces and SPR Instruments . . . . . 125 6.4.1. Modified Dextran-Based Surfaces . . . . . 125 6.4.2. Hybrid Bilayer Membrane Surfaces . . . . . 126 6.4.3. Experimental Protocols for Membrane Interaction Studies by SPR Spectroscopy . . . . . 126 6.4.4. Liposome Preparation . . . . . 127 6.4.5. Formation of Supported Lipid Monolayer (HBM) and Bilayer Systems . . . . . 128 6.4.6. Peptide Binding to the HPA-HBM and L1-Bilayer Systems . . . . . 129 6.4.7. Variation of Flow Rate . . . . . 131 6.4.8. HPA versus L1 Sensor Chip . . . . . 132 6.5. Theoretical Considerations . . . . . 135 6.5.1. Linearization Analysis . . . . . 136 6.5.2. Numerical Integration Analysis . . . . . 137 6.5.3. Steady-State Approximations . . . . . 139 6.5.4. A Case Study: Antimicrobial Peptides . . . . . 141 6.6. Conclusions . . . . . 144 References . . . . . 144 7. Laser Light Scattering Approach to Peptide-Membrane Interaction . . . . . 151 Marco M. Domingues and Nuno C. Santos 7.1. Introduction . . . . . 153 7.2. Static Light Scattering . . . . . 155 7.2.1. Sample Preparation . . . . . 159 7.3. Dynamic Light Scattering . . . . . 159 7.3.1. Sample Preparation . . . . . 163 7.4. ζ Potential . . . . . 164 7.4.1. Sample Preparation . . . . . 167 7.5. Applications . . . . . 167 7.6. Other Practical Aspects . . . . . 174 7.7. Conclusion . . . . . 175 Acknowledgments . . . . . 175 References . . . . . 176 8. Giant Unilamellar Vesicles, Fluorescence Microscopy and Lipid-Peptide Interactions . . . . . 179 Ernesto E. Ambroggio and Luis A. Bagatolli 8.1. Introduction . . . . . 181 8.2. Giant Unilamellar Vesicles . . . . . 183 8.2.1. Recent Updates in Protocols for GUV Formation . . . . . 184 8.2.2. Protocols to Generate GUVs . . . . . 185 8.3. Applications of GUVs in Lipid-Peptide Interaction Using Fluorescent-Microscopy-Related Techniques . . . . . 190 8.3.1. Pore Formation versus Membrane Solubilization . . . . . 190 8.3.2. The Importance of Choosing the Entrapped Fluorescent Probes: The Case of Carboxyfluorescein . . . . . 192 8.3.3. Membrane Translocation of Peptides . . . . . 193 8.3.4 Effect of Peptide Interaction on Membrane Lateral Structure . . . . . 193 8. Future Perspectives . . . . . 194 Acknowledgments . . . . . 194 References . . . . . 195 9. The Structural and Topological Analysis of Membrane Polypeptides by Oriented Solid-State NMR Spectroscopy: Sample Preparation and Theory . . . . . 201 Burkhard Bechinger, Philippe Bertani, Sebastiaan Werten, Cléria Mendonça de Moraes, A. James Mason, Christopher Aisenbrey, Barbara Perrone, Marc Prudhon, U. S. Sudheendra, and Verica Vidovic 9.1. Introduction . . . . . 203 9.2. Reconstitution of Membrane Polypeptides from Organic Solution . . . . . 205 9.3. Reconstitution of Membrane Polypeptides in Aqueous Environments . . . . . 209 9.4. Mechanically Orienting the Samples . . . . . 211 9.5. Oriented NMR Measurements: Experimental Considerations . . . . . 213 9.6. Orientation-Dependent Solid-State NMR Used for the Structural Analysis of Membrane Polypeptides . . . . . 214 9.7. Motional Averaging and Membrane Peptide Aggregation . . . . . 218 9.8. Example Spectra . . . . . 220 Acknowledgments . . . . . 222 References . . . . . 222 10. Peptide-Membrane Interactions Studied by Ellipsometry, Laser Scanning Microscopy, and Z-Scan Fluorescence Correlation Spectroscopy . . . . . 227 Adam Miszta, Radek Machan, Wim Th. Hermens, and Martin Hof 10.1. Introduction . . . . . 229 10.1.1. Antimicrobial Peptides . . . . . 230 10.1.2. Supported Phospholipid Model Membranes . . . . . 231 10.2. Experimental Techniques . . . . . 232 10.2.1. Basic Principles of Ellipsometry . . . . . 232 10.2.2. Basic Principles of Z-Scan Fluorescence Microscopy . . . . . 236 10.3. Results-Interaction of Cryptdin-4 and Magainin 2 with Negatively Charged Bilayers . . . . . 243 10.4. Summary . . . . . 247 Acknowledgments . . . . . 248 References . . . . . 248 11. Quantification and Proteolytic Analysis of Cell-Penetrating Peptides and Cargo in Eukaryote Cells . . . . . 257 Sandrine Sagan, Diane Delaroche, Baptiste Aussedat, Soline Aubry, Gérard Bolbach, Isabel D. Alves, Solange Lavielle, Gérard Chassaing, and Fabienne Burlina 11.1. Introduction . . . . . 259 11.2. General Protocol Outline . . . . . 262 11.2.1. Peptide Design . . . . . 263 11.2.2. Key Steps for the Accuracy of the Method . . . . . 267 11.3. Quantification of Cell-Penetrating Peptides and Pseudopeptides . . . . . 270 11.4. Kinetics of Uptake and Metabolism of CPP in CHO Cells . . . . . 272 11.5. Cargo Internalization Quantification . . . . . 273 11.6. Cytotoxicity of Cell-Penetrating Peptides . . . . . 274 11.7. Toward the Mechanism of Entry? . . . . . 274 Acknowledgments . . . . . 275 References . . . . . 275 12. Planar Lipid Bilayers for Electrophysiology of Membrane-Active Peptides . . . . . 281 Fabrice Homblé, Lamia Mlayeh, and Marc Léonetti 12.1. Introduction . . . . . 283 12.2. Basic Electrical Properties of a Planar Lipid Bilayer . . . . . 287 12.2.1. Membrane Potential . . . . . 288 12.2.2. Membrane Current . . . . . 288 12.2.3. Membrane Capacitance . . . . . 289 12.2.4. Membrane Conductance . . . . . 290 12.3. Recording Equipment . . . . . 291 12.3.1. The Faraday Cage . . . . . 292 12.3.2. Antivibration Platform . . . . . 293 12.3.3. Electrodes . . . . . 293 12.3.4. Preparation of Ag-AgCl Electrodes . . . . . 293 12.3.5. Preparation of Salt Bridges . . . . . 294 12.4. Experimental Solutions . . . . . 296 12.4.1. Aqueous Solutions . . . . . 296 12.4.2. Lipid Solutions . . . . . 296 12.5. Formation of a Planar Lipid Bilayer . . . . . 297 12.5.1. Painted Planar Lipid Bilayers . . . . . 297 12.5.2. Folded Planar Lipid Bilayers . . . . . 298 12.5.3. Membrane Thickness . . . . . 299 12.5.4. Membrane Conductance . . . . . 300 12.5.5. Painted versus Folded Bilayer . . . . . 302 12.5.6. Artifacts . . . . . 303 12.6. Concept of Membrane Potential . . . . . 304 12.6.1. Dipole Potential . . . . . 307 12.6.2. Surface Potential Difference . . . . . 310 12.7. Conclusions . . . . . 310 References . . . . . 250 13. Atomic Force Microscopy Studies of Peptide-Membrane Interactions . . . . . 321 Yves F. Dufrêne 13.1. Introduction . . . . . 323 13.2. Methodology . . . . . 325 13.2.1. Preparing Supported Lipid Films . . . . . 325 13.2.2. Atomic Force Microscopy Methodology . . . . . 329 13.3. Applications . . . . . 331 13.3.1. Imaging Supported Lipid Membranes . . . . . 331 13.3.2. Real-Time Imaging of Peptide-Membrane Interactions . . . . . 334 Acknowledgments . . . . . 337 References . . . . . 338 14. Cell-Penetrating Peptides-Uptake, Toxicity, and Applications . . . . . 341 Gisela Tünnemann and M. Cristina Cardoso 14.1. Introduction-Bits and Pieces of CPP History . . . . . 343 14.2. Influence of Cargo on Mode of Uptake . . . . . 345 14.2.1. Affinity Tags and Protease Removal Sites . . . . . 346 14.2.2. Low-Molecular-Weight Cargoes . . . . . 346 14.2.3. Special Role of Arginine-Rich Peptides in Cellular Uptake . . . . . 348 14.2.4. Relevant Parameters when Measuring CPP Uptake . . . . . 349 14.3. Models for the Mechanism of Transduction . . . . . 350 14.3.1. Pore Formation . . . . . 350 14.3.2. Formation of Inverted Micelles . . . . . 350 14.3.3. Adaptive Translocation . . . . . 352 14.4. Toxicity of Cell-Penetrating Peptides . . . . . 354 14.4.1. In Vitro . . . . . 354 14.4.2. In Vivo . . . . . 355 14.5. CPP-Mediated Intracellular Delivery in Molecular Medicine Applications . . . . . 356 14.5.1. Labeling and Imaging . . . . . 356 14.5.2. Modulation of Intracellular Function . . . . . 357 14.6. Conclusions and Perspectives . . . . . 360 Acknowledgments . . . . . 363 References . . . . . 363 15. Cell-Penetrating Peptides: Trojan Horse for Macromolecule Delivery in Plant Cells . . . . . 373 Archana Chugh and François Eudes 15.1. Introduction . . . . . 375 15.2. Uptake of CPPs in Plants . . . . . 377 15.2.1. Preparation of Plant Cells and Tissues . . . . . 377 15.3. Translocation of Fluoresceinated CPPs in Plant Cells . . . . . 380 15.3.1. Protoplasts . . . . . 380 15.3.2. Microspores . . . . . 380 15.3.3. Zygotic Embryos . . . . . 381 15.3.4. Leaf Bases and Root Tips . . . . . 381 15.3.5. Fluorescence and Fluorimetric Analysis . . . . . 382 15.4. Delivery of CPP-Driven Macromolecular Cargo Complexes in Plant Cells and Tissues . . . . . 383 15.4.1. Noncovalent Protein Transduction in Plant Cells . . . . . 383 15.4.2. Transfection of Plant Cells and Tissues with CPP-Plasmid DNA Complex . . . . . 385 15.5. Effect of Endocytic and Macropinocytic Inhibitors . . . . . 387 15.6. FDA Staining Test for Plant Cell Viability . . . . . 388 References . . . . . 388 16. Biophysics and the Way Out of the Endosomal versus Non-Endosomal Dilemma for Cell-Penetrating Peptide Pep-1 . . . . . 393 Sónia Troeira Henriques 16.1. Introduction . . . . . 395 16.1.1. Strategies To Introduce Macromolecules into Cells . . . . . 395 16.1.2. Peptides as Vectors . . . . . 397 16.1.3. How Do CPPs Translocate across Cell Membranes? . . . . . 399 16.1.4. Pep-1: A New Peptide Carrier . . . . . 401 16.2. Insights in the Translocation Mechanism of Pep-1 . . . . . 401 16.2.1. Pep-1 Aggregates in Aqueous Environment . . . . . 402 16.2.2. Pep-1 Has a High Affinity for Lipidic Membranes . . . . . 403 16.2.3. Pep-1 Modulates Membrane Stability but Does Not Form Pores . . . . . 406 16.2.4. Pep-1 Translocates across Llipidic Membranes by a Mechanism Promoted by Transmembrane Potential . . . . . 408 16.2.5. Pep-1 Translocation into Mammalian Cells Occurs by a Mechanism Modulated by Transmembrane Potential . . . . . 409 16.2.6. Overall Mechanism: Importance of Lipidic Membrane and Electrostatic Interaction on Pep-1 Uptake . . . . . 411 16.3. Toward a New Phase Regarding CPP Mechanisms: The Co-existence of Translocation Mechanisms . . . . . 414 References . . . . . 418 17. Structure and Activities of Antimicrobial Peptides at the Bacterial Membrane . . . . . 427 Francesca Morgera, Lisa Vaccari, Luisa Creatti Nikolinka Antcheva, and Alessandro Tossi 17.1. Introduction . . . . . 429 17.2. Spectroscopic Techniques Applied to AMP-Model Membrane Systems-a Valuable Tool for Molecular Biophysics Studies . . . . . 431 17.2.1. Model Membranes as a Tool for Probing Peptide Structural Variations . . . . . 431 17.2.2. Circular Dichroism Applied to Peptide-Membrane Interactions . . . . . 435 17.2.3. FTIR Spectroscopy Applied to Peptide Structure Characterization in Solution and Inserted into Membranes . . . . . 437 17.3. CD and FTIR Spectroscopy for AMP Structural Investigations: Methods and Results . . . . . 442 17.3.1. CD Methods and Results . . . . . 449 17.3.2. Transmission and FTIR Measurements on Peptides in Solution . . . . . 453 17.3.3. ATR-FTIR on Peptide Inserted in Model Membranes . . . . . 454 17.4. Activities of AMPs: Liposome and Bacterial Cell Permeabilization Assays . . . . . 457 17.4.1. Dye Release from Preloaded Liposomes . . . . . 457 17.4.2. Permeabilization of Bacterial Cells by Means of Flow Cytometric and Classical Fluorimetric Methods . . . . . 460 Acknowledgments . . . . . 466 References . . . . . 467 18. Membranotropic Regions of Membrane-Fusion Proteins: The Use of Peptide Libraries . . . . . 473 Ana J. Pérez-Berná, Jaime Guillén, Miguel R. Moreno, and José Villalaín 18.1. Introduction . . . . . 475 18.2. The “Dry Toolbox”: Is It Possible To Deduce the Membranotropic Segments of a Protein from Its Sequence? . . . . . 478 18.3. The “Damp Toolbox”: Can We Reproduce the “Dry Toolbox” Results? . . . . . 480 18.4. Peptide Interaction with the Membrane: Binding, Location and Modulation of the Membrane Phase Structure . . . . . 485 18.5. Modulation of Peptide Structure by Membrane Binding . . . . . 494 References . . . . . 498 19. NMR to Access the Transient Interactions between Viral Fusion Peptides and Their Target Membranes . . . . . 505 Andrea T. Da Poian, Fabio C. Almeida, Ana Paula Valente, Ronaldo Mohana-Borges, and Francisco Gomes Neto 19.1. Introduction . . . . . 507 19.2. Virus-Induced Membrane Fusion . . . . . 509 19.3. Viral Fusion Proteins and Fusion Peptides . . . . . 510 19.4. Experimental Requirements . . . . . 511 19.4.1. Structural Calculation . . . . . 512 19.5. The Case of an Antimicrobial Peptide, PW2 . . . . . 514 19.6. Dynamics of Viral Fusion Peptides-Membrane Interaction Studied by NMR . . . . . 515 19.6.1. Vesicular Stomatitis Virus . . . . . 515 19.6.2. Ebola Virus . . . . . 520 References . . . . . 522 20. HIV-1 Fusion Inhibitor Peptides: A Cross Correlation between Efficacy and Membrane-Level Activity . . . . . 527 Ana Salomé Veiga and Henri G. Franquelim 20.1. Introduction . . . . . 529 20.2. Methods and Results . . . . . 532 20.2.1. Photophysical Characterization . . . . . 532 20.2.2. Partition Coefficient Determination . . . . . 533 20.2.3. The Interaction of T-20 and T-1249 with Cholesterol-Containing Membranes . . . . . 537 20.2.4. Interaction of T-1249 with Cholesterol-Rich Areas Vesicles. A FRET Study . . . . . 544 20.2.5. Quenching Experiments To Evaluate the Partition Patterns of Sifuvirtide . . . . . 548 20.2.6. Adsorption of Sifuvirtide on DPPC Gel-Phase Membranes Confirmed by FRET . . . . . 548 20.2.7. In-Depth Location of the Peptides in Membranes . . . . . 550 20.2.8. T-20 and T-1249 Secondary-Structure Studies . . . . . 553 20.3. Conclusions—New Trends in HIV Fusion Inhibition by Peptides . . . . . 556 References . . . . . 403 21. Induced Perturbations and Adopted Conformations in Membranes by the HIV-1 Fusion Peptide . . . . . 565 José L. Nieva, Nerea Huarte, Shlomo Nir, and David Weliky 21.1. Introduction . . . . . 567 21.2. FP-Induced Membrane Perturbations: Leakage and Fusion . . . . . 570 21.2.1. Leakage and Pore Formation in POPG Vesicles . . . . . 572 21.2.2. Induction of Fusion of Cholesterol-Containing Liposomes . . . . . 578 21.3. Structural Characterization by Low-Resolution Techniques . . . . . 580 21.4. Structural Characterization by High-Resolution NMR Techniques . . . . . 584 21.4.1. Background and Sample Preparation . . . . . 584 21.4.2. HFP in Detergent Micelles . . . . . 586 21.4.3. HFP Conformation in Membranes . . . . . 586 21.4.4. IHFP Tertiary Structure . . . . . 587 21.4.5. Membrane Location of HFP . . . . . 588 21.4.6. Membrane Insertion Angle of HFP . . . . . 589 21.4.7. Correlation of Structural Results with Fusion Activity . . . . . 590 21.4.8. Future Studies . . . . . 590 References . . . . . 591 22. Membrane Binding of Cyclotides . . . . . 597 Conan K. Wang, Yen-Hua Huang, Kathryn Greenwood, and David J. Craik 22.1. Background . . . . . 599 22.2. Surface Plasmon Resonance Studies . . . . . 603 22.2.1. Liposome Preparation . . . . . 603 22.2.2. Formation of Lipid-Bilayer Membranes . . . . . 604 22.2.3. Cyclotide Binding to the Bilayer Membrane . . . . . 605 22.3. NMR Studies . . . . . 606 22.3.1. Binding of Kalata B1 to DPC Micelles . . . . . 607 22.3.2. IStructure and Orientation of Micelle-Bound Kalata B1 . . . . . 611 22.3.3. Divalent Cation-Binding Site in Micelle-Bound Kalata B1 . . . . . 612 22.4. Functional Pores in Membranes . . . . . 613 22.4.1. Lipid Systems for the Investigation of Membrane-Cyclotide Interactions . . . . . 614 22.4.2. Vesicle Preparation . . . . . 615 22.4.3. Dye Leakage Experiments . . . . . 616 22.4.4. Electrophysiological Recording . . . . . 618 22.4.5. Preparation of Liposomes . . . . . 619 22.4.6. Patch Clamping . . . . . 620 22.5. Cell-Based Studies of Cyclotides . . . . . 621 22.5.1. Hemolytic Properties . . . . . 622 22.5.2. Mammalian Cell Membrane Interaction . . . . . 623 22.6. Summary . . . . . 627 References . . . . . 628 23. Time-Resolved Fluorescence Methodologies in the Study of Lipid-Peptide Interaction . . . . . 673 Luís M. S. Loura and Manuel Prieto 23.1. Introduction . . . . . 675 23.2. Time-Resolved versus Steady-State Fluorescence Spectroscopy . . . . . 677 23.3. Instrumentation . . . . . 679 23.4. Data Analysis . . . . . 681 23.5. Methodologies and Results in Time-Resolved Fluorescence of Lipid-Peptide Systems . . . . . 688 23.5.1. Lifetimes . . . . . 688 23.5.2. Anisotropy . . . . . 689 23.5.3. Quenching . . . . . 692 23.3.4. Förster Resonance Energy Transfer . . . . . 697 23.6. Conclusions . . . . . 702 Acknowledgments . . . . . 703 References . . . . . 703 Index . . . . . 707
Preface
<>The world of membrane active peptides is fascinating. Lipid membranes are a challenge: at the molecular level they are neither bidimensional nor literally three-dimensional (3D) at the molecular scale; instead they are severely confined 3D systems. In contrast with the majority of “living chemistry,” the (bio)chemistry of lipid membrane core processes is hydrophobic; yet the lipid bilayers interfaces are polar, allowing a multitude of physical interfacial interactions. Moreover, multicomponent lipid systems may lead to lateral heterogeneity, turning membranes into patched surfaces, with different areas having different functionalities. At the same time, peptides are curious short-chain heteropolymers: while they may be plastic, the adopted conformations tend to be restricted to the typified tertiary structures; they may be amphiphilic and/or amphipathic, and their physical and chemical diversity is immense. When peptides and lipids meet, they often associate and affect each other. In the most severe cases, peptides disrupt the lipid bilayers. In the most intriguing ones, peptides translocate across bilayers but leave them intact. In any case, the scientist is confronted with the foundations of phenomena of the utmost importance to natural sciences: antimicrobial drugs innate to man, viral fusion and assembly, gene transfection and receptor-ligand interactions, to name a few. This book reflects the richness the field it is devoted to: membrane active peptides, from structural to functional studies: Here one can find the work of prominent groups using a vast array of different samples and different tools, from theoretical work in silico to spectroscopic work in cells. My challenge to the reader is to go through the book not thinking of membrane-active peptides as divided in strict families. To not think of viral, cell penetrating, and antimicrobial peptides as different entities. They are all membrane-active peptides and share more properties than one wonders at first sight. Their separation in different families is quite artificial. This book goes through generalist methodologies, such as in silico analysis and predictions, fluorescence and NMR spectroscopies, ellipsometry, surface plasmon resonance, electrophysiology, and FTIR, among others, and different samples, from artificial membranes (Langmuir monolayers, vesicles, planar lipid bilayers, supported bilayers…) to both animal and plant cells, to address pertinent topics as the detection of membrane-active segments in proteins, extent of uptake of peptides by lipid bilayers, in-depth location of peptides in lipid membranes, orientation relative to the lipids, aggregation, membrane permeabilization and membrane fusion, and the interplay between lipid heterogeneity and peptide uptake. In the end, the reader will learn about membrane-active peptides as a whole, their basic mechanisms and their impact on biotechnology, health and disease. I am grateful to all authors for their active collaboration and commitment on this endeavour. Their expertise and educated insight on each subject turned this book into a timely tool and source of information for researchers and educators on peptide science and/or cell membrane structure and function. I thank them all and am certain that the reader will enjoy and benefit from their work. Thank you also to Manuel Melo for drawing the cover figure. In the end I cannot help thinking of my own family and the families and friends of the authors for the attention they did not receive in the extra-hours of work dedicated to this book. Miguel A. R. B. Castanho Lisbon, Portugal
David Andreu –
Scientific Affairs Officer of the European Peptide Society, Professor of Chemistry, Universitat Pompeu Fabra, Barcelona, Spain
A timely, comprehensive, authoritative survey of the ever-expanding world of membrane-active peptides, this book will be of interest not only for experts in the various fields (biochemistry, biophysics, microbiology, and therapeutics) where peptides meet membranes, but for a more general reader looking for a reliable introduction to this exciting area. A well-known leader in the field, Prof. Castanho has assembled a distinguished team of specialists who cover practically all aspects of the subject, at both theoretical and experimental levels, with strong emphasis on antimicrobial and cell-penetrating peptides. Carefully written and edited, this volume is likely to become a unique reference on membrane-active peptides for many years to come.